
RECURSION

Biswajit Prasad
Assistant Professor

Department of Computer Science
Maharaja Manindra Chandra College

Calcutta 700 003

Recursion

 A function defined in terms of itself is called recursive.
Example: Factorial, Fibonacci Series, …

 The power of recursion lies in the possibility of
defining a potentially infinite set of objects by a finite set
of statements.

• In most High Level Languages, subprograms can be
declared recursively.

• Most of the modern processors support the mechanism of
recursion at the machine level.

General Definition

f(X0) =<expression> [independent on f]

f(Xi) =G(Xi,f(Xj)) [generally j<i]

 Since f(Xi) depends on f(Xj) and not on f(Xi) itself , the
above definition is not circular.

Types of Recursion

• Linear Recursion: A recursive algorithm in which only one internal
 recursive call is made within the body is called linearly recursive.

function L (…)

{ if base condition satisfied

then return some value(s) else {

perform some actions; make call to L;
}

}

Examples: Factorial, GCD, Binary Search, etc.
• Large depth of recursion , simple iterative solution.

Types of Recursion…

• Binary Recursion: An algorithm that makes two internal calls to itself is said

 to be binary recursive.

Examples: Fibonacci sequence, Quicksort, Mergesort, Binary Tree
algorithms, General Divide–and–conquer algorithms.

function B(…)

{ if base condition satisfied

then perform actions/ return value(s) else

{ perform some action(s);
make a call to B to solve one smaller
problem ;

make a call to B to solve the other
smaller problem ;

}

}

Types of Recursion…

• Non-linear recursion: An algorithm using a number of (> 2) internal
recursive calls within the body of the procedure is non-linear
recursive.

function N(…)
{ for j:= k to n do

{ perform some action(s);
if base condition not satisfied then
make a call to N
else perform some action(s);

}
}

Examples: Sample Generation, Combination generation, Permutation generation, etc.

Types of Recursion…

• Mutual Recursion: In this type of recursion, a function calls itself indirectly
 via another function that calls itself indirectly via the first function.

function M1(…)
{

:
call to M2;
:

}
function M2(…);

{
:
call to M1;
:

}
• M1 and M2 are interlocked.
Examples: Recursive Descent Compilation, Hilbert Curves, etc.

Rules for writing correct and efficient recursive algorithms

1. Base Cases: Some base cases must be there. These can be solved
without recursion.

2. Making Progress: For the cases that are to be solved recursively, the
recursive call must always be to a case that makes progress towards a
base case. [Eventually the base case must be reached !]

3. Design Rule: Assume that the recursive calls work.

4. Compound Interest Rule: Never duplicate work by solving the same
instance of a problem in separate recursive calls.

• Recursive calls are particularly appropriate when the underlying
problem or data are defined in recursive terms.

• But not all recursive algorithms are efficient.

A bad example

void print-list (T * Head) { if (!
empty_l(Head)) {

print_info(Head -> info);
 print_list(Head -> next);

}
}

void print_list (T * Head) { top: if
(!empty_l(Head)){

print_info(Head->info);
 Head = Head->next;
goto top;

}
}

Recursion removed

void print_list (T * Head) {
while (! (empty_l(Head)))

{ print_info (Head-
>info); Head = Head-
>next;

}
}

Non-terminating Recursive Programs

P1:
if x == 0
then f = 1;
else f = f(x+1) + f(x+2);

 Makes progress away from the base condition!

P2:
if x == 0 then f = 1;
else f = f(x-2) * f(x-3);

• Apparently makes progress towards the base condition but may not
 reach the base condition.

Application of Stack in Function Call
 Implementation

• As a stack is a LIFO structure, it is an appropriate data
structure for applications in which information must be
saved and later retrieved in reverse order.

• Consider what happens within a computer when function
main() calls another function.

• How does a program remember where to resume execution
from, after returning from a function call?

• From where does it pick up the values of the local variables in
the function main() after returning from the subprogram?

Function Call Implementation . . .

 As an example, let main() call a(). Function a(), in
turn, calls function b(), and function b() in turn
invokes function c().

• main() is the first one to execute, but it is the last
one to finish, after a() has finished and returned.

• a() cannot finish its work until b() has finished and
 returned. b() cannot finish its work until c() has
finished and returned.

Function Call Implementation . . .

 When a() is called, its calling information is pushed
 on to the stack (calling information consists of the
address of the return instruction in main() after a()
 was called, and the local variables and parameter
declarations in main().

• When b() is called from a(), b()’s calling
information is pushed onto the stack (calling
information consists of the address of the return
instruction in a() after b() was called, the local
variables of b(), and parameter declarations in a(
)).

Function Call Implementation . . .

 Then, when b() calls c(), c()’s calling information is
pushed onto the stack (calling information consists
of the address of the return instruction in b() after c(
) was called, the local variables of c() and parameter
declarations in b()).

• When c() finishes execution, the information needed
to return to b() is retrieved by popping the stack.

• Then, when b() finishes execution, its return address
 is popped from the stack to return to a()

Function Call Implementation . . .

 Finally, when a() completes, the stack is again
popped to get back to main().

• When main() finishes, the stack becomes empty.

• Thus, a stack plays an important role in function
calls.

• The same technique is used in recursion when a
function invokes itself.

Advantages of Function

 Functions facilitate the factoring of code. Every C program
consists of one main() function typically invoking other
functions, each having a well-defined functionality.

• Functions therefore facilitate:
 Reusability
 Procedural abstraction

• By procedural abstraction, we mean that once a function is
 written, it serves as a black box. All that a programmer
would have to know to invoke a function would be to
know its name, and the parameters that it expects.

Function Calls – A Top Level Overview

 When a function call is encountered, it
involves the following steps:

1. Each expression in the argument list is
evaluated.

2. The value of the expression is converted, if
necessary, to the type of the formal parameter,
and that value is assigned to the corresponding
formal parameter at the beginning of the body
of the function.

3. The body of the function is executed.

Function Calls – A Top Level Overview. . .

4. If the return statement includes an expression,
then the value of the expression is converted, if
necessary, to the type specified by the type
specifier of the function, and that value is
passed back to the calling function.

5. If no return statement is present, the control is
passed back to the calling function when the
end of the body of the function is reached. No
useful value is returned.

Function Calls & The Runtime Stack

• Runtime Environment: Runtime Environment
is the structure of the target computer’s registers
and memory that serves to manage memory and
 maintain the information needed to guide the
execution process.

• The C language uses a stack-based runtime
environment, which is also referred to as a
runtime stack, or a call stack.

Function Calls & The Runtime Stack. . .

Memory

Register Area

RA
M

Code Area

Data Area

Code Area

Code for

Procedure 1

Code for

Procedure 2

.

.

Code for

Procedure n

Entry point for procedure
1

Entry point for procedure
2

Entry point for procedure
n

Data Area

 Only a small part of data can be assigned fixed
 locations before execution begins
 Global and/or static data
 Compile-time constants

 Large integer values
 Floating-point values

 Literal strings

Dynamic Memory

 The memory area for the allocation of dynamic
 data can be organized in many different ways.

 A typical organization divides the dynamic
memory into
– stack area (LIFO)
– heap area

Memory Organization

code area

global/static area

free space

stack

free space

 heap

Procedure Activation Record

 Procedure activation record
contains memory allocated for
the local data of a procedure or
 function when it is called, or
activated.

 When activation records are
kept on stack, they are called
stack frames. Details depend
on the architecture of target
machine and properties of the
language.

arguments

bookkeeping information
(return address)

local data

local temporaries

A Procedure Activation
Record or a Stack Frame

Registers

 Registers may be used to store temporaries, local
variables, or even global variables.

 When a processor has many registers, the entire
static area and whole activation records may be
kept in the registers.

 Special purpose registers:
 Program counter (PC)
 Stack pointer (SP)

Calling Sequence

 The calling sequence is the sequence of
operations that must occur when a
procedure or function is called.
 Allocation of memory for the activation

record
 The computation and storing the arguments
 Storing and setting registers

Return Sequence

 The return sequence is the sequence of
operations needed when a procedure or
function returns.
 The placing of the return value where it can

 be accessed by the caller
 Readjustment of registers
 Releasing of activation record memory

Stack-based Runtime Environment

 In a language in which recursive calls are
allowed, activation records are allocated in a
 stack

• This stack is called the stack of activation
records (runtime stack, or, simply stack).

• Each procedure may have several different
activation records at one time.

Global Procedures

 In a language where all procedures are global
(like the C language), a stack-based
environment requires two things:

1. A pointer to the current activation record to allow
access to local variables.
 This pointer is called the frame pointer (fp) and is

usually kept in a register.
2. The position or size of the caller’s activation record

 This information is commonly kept in the current
activation record as a pointer to the previous activation
record and referred as the control link or dynamic link.

 Sometimes, the pointer is called the old fp
3. Additionally, there is a stack pointer (sp)

 It always points to the top of the stack

Tracing Function Calls

 int z;
 main()
 {
 int x;
 fn_a();
 …. . .
 .
 .
 .
 }
•

Point of return

fn_a(int m)

{

int y; fn_b();

….. point of

return

.

.

.

}

fn_b(int n)

{

int b;

…..

.

.

.

}

A View of the Runtime Stack

Free Store (Heap)

n
control link return
address
b

m
y

control link return
address

x

z

sp

Global static area

Activation record of main

Activation record of call to fn_a()

Activation record of call to fn_b()

fp

S
t
a

c

k
G
r
o
w

t
h

Access to Variables

 In a stack-based environment, variables must be
found by offset from the current frame pointer.

 In most languages, the offset for each local
variable is still statically computable by
compiler.

– The declarations of a procedure are fixed at compile
time and the memory size to be allocated for each
declaration is fixed by its data type.

Calling Sequence

1. Compute the arguments and store them in
their correct positions in the new activation
record (pushing them in order onto the
runtime stack)

2. Store (push) the fp as the control link in the
new activation record.

3. Change the fp so that it points to the beginning
 of the new activation record (fp=sp)

4. Store the return address in the new activation
record.

5. Jump to the code of the procedure to be called.

Return Sequence

1. Copy the fp to the sp (sp=fp)
2. Load the control link into the fp
3. Change the sp to pop the arguments.
4. Jump to the return address

	RECURSION
	Recursion
	General Definition
	Types of Recursion
	Types of Recursion…
	Types of Recursion… (2)
	Types of Recursion… (3)
	Slide 8
	A bad example
	Recursion removed
	Non-terminating Recursive Programs
	Application of Stack in Function Call Implementation
	Function Call Implementation . . .
	Function Call Implementation . . . (2)
	Function Call Implementation . . . (3)
	Function Call Implementation . . . (4)
	Advantages of Function
	Function Calls – A Top Level Overview
	Function Calls – A Top Level Overview. . .
	Function Calls & The Runtime Stack
	Function Calls & The Runtime Stack. . .
	Code Area
	Data Area
	Dynamic Memory
	Memory Organization
	Procedure Activation Record
	Registers
	Calling Sequence
	Return Sequence
	Stack-based Runtime Environment
	Global Procedures
	Tracing Function Calls
	A View of the Runtime Stack
	Access to Variables
	Calling Sequence (2)
	Return Sequence (2)

